Consecutive Cyclization of Allylaminoalkene by Intramolecular Aminolithiation—Carbolithiation

2008 Vol. 10, No. 16 3635–3638

ORGANIC LETTERS

Susumu Tsuchida, Atsunori Kaneshige, Tokutaro Ogata, Hiromi Baba, Yasutomo Yamamoto, and Kiyoshi Tomioka*

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan tomioka@pharm.kyoto-u.ac.jp

Received June 20, 2008

ABSTRACT

Consecutive cyclization of allylaminoalkenes by tandem aminolithiation—carbolithiation proceeded smoothly by using a lithium amide as a lithiating agent as well as protonating agent to give bicyclic amines, octahydroindolizine and hexahydro-1*H*-pyrrolizine, in reasonably high yield and diastereoselectivity.

The prevalence of cyclic amines in natural products and biologically active compounds necessitates the development of novel methods for their syntheses.¹ Although brilliant syntheses of these compounds have been reported by using the methodologies of alkylation and hydrogenation of C–N double bonds,^{2,3} approaches toward amination of C–C double bonds have begun only recently. Conjugate hydroamination of C–C double bonds activated by an electron-withdrawing group has met some successes through the reaction of lithium amide as a nitrogen nucleophile.^{4,5} On the other hand, direct hydroamination^{6,7} of simple C–C double bonds⁸ has remained in a relatively undeveloped stage.

We have already reported the chiral ligand-controlled asymmetric conjugate amination reaction of enoates with lithium amides.⁹ Quite recently, we also reported the lithium-catalyzed asymmetric intramolecular amination of aminoalkenes.¹⁰ These reactions are characteristic of the involvement of lithiated intermediates. In the conjugate additionapproach, the alkylation of a lithium enolate intermediate provided N–C and C–C bonds in one pot.^{9c,d} In the hydroamination approach, the aminolithiation intermediate is an organo-lithium **3** (Scheme 1). If this intermediate **3** is capable of being involved in carbolithiation with an intramolecular carbon–carbon double bond,^{11,12} another organolithium **4** would be generated to give a bicyclic amine **5** upon protonation. We describe herein the realization of an aminolithiation–carbolithiation tandem process of **1** to provide a method of one-pot formation of bicyclic amine **5** (Scheme 1).

^{(1) (}a) Bergmeier, S. C. *Tetrahedron* **2000**, *56*, 2561–2576. (b) France, S.; Guerin, D. J.; Miller, S. J.; Lectka, T. *Chem. Rev.* **2003**, *103*, 2985–3012. (c) Lee, H.-S.; Kang, S. H. *Synlett* **2004**, 1673–1685.

^{(2) (}a) Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169–196. (b) Noyori, R.; Kitamura, M.; Ohkuma, T. Proc. Nat. Aca. Sci. U.S.A. 2004, 101, 5356–5362.

^{(3) (}a) Fujihara, H.; Nagai, K.; Tomioka, K. J. Am. Chem. Soc. 2000, 122, 12055–12056. (b) Kuriyama, M.; Soeta, T.; Hao, X.; Chen, Q.; Tomioka, K. J. Am. Chem. Soc. 2004, 126, 8128–8129.

⁽⁴⁾ Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron: Asymmetry 2005, 16, 2833–2891.

⁽⁵⁾ Alkoxyamination and azidation: (a) Guerin, D. J.; Miller, S. J. J. Am. Chem. Soc. 2002, 124, 2134–2136. (b) Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2003, 125, 16178–16179. (c) Sibi, M. P.; Prabagaran, N.; Ghorpade, S. G.; Jasperse, C. P. J. Am. Chem. Soc. 2003, 125, 11796–11797. (d) Palomo, C.; Oiarbide, M.; Halder, R.; Kelso, M.; Gómez-Bengoa, E.; García, J. M. J. Am. Chem. Soc. 2004, 126, 9188– 9189. (e) Hamashima, Y.; Somei, H.; Shimura, Y.; Tamura, T.; Sodeoka, M. Org. Lett. 2004, 6, 1861–1864. (f) Taylor, M. S.; Zalatan, D. N.; Lerchner, A. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 1313– 1317. Aza-Michael reaction: (g) Enders, D.; Narine, A. A.; Toulgoat, F.; Bisschops, T. Angew. Chem., Int. Ed. 2008, early view.

⁽⁶⁾ Řeviews: (a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675–703.
(b) Seayad, J.; Tillack, A.; Hartung, C. G.; Beller, M. Adv. Synth. Catal. 2002, 344, 795–812.
(c) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368–3398.
(d) Hartwig, J. F. Pure Appl. Chem. 2004, 76, 507–516.
(e) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 437, 673–686.
(f) Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 4555–4563.

In THF allylaminoalkene **1a** was treated with 0.1 equiv of butyllithium for 1 h at room temperature smoothly to give hydroamination product **6a** in 92% yield and **7a** was not detected (Table 1, entry 1). With 0.2 equiv of lithium diisopropylamide (LDA) for 2 h at room temperature, **6a** was isolated in 95% yield along with 1% yield of bicyclic amine **7a** (entry 2). Contrary to these disappointing results, the reaction with 1.5 equiv of butyllithium for 2 h at room temperature gave 33% yield of **7a** as a 1:4 mixture of two diastereomers and **6a** in 5% yield (entry 3). With 1.5 equiv of LDA, **7a** was isolated in 74% yield as a 6:1 mixture of two diastereomers along with **6a** in 15% yield (entry 4).

(7) (a) Beller, M.; Breindl, C. Tetrahedron 1998, 54, 6359–6368. (b) Seijas, J. A.; Vázquez-Tato, M. P.; Entenza, C.; Martínez, M. M.; Onega, M. G.; Veiga, S. Tetrahedron Lett. 1998, 39, 5073–5076. (c) Ates, A.; Quinet, C. Eur. J. Org. Chem. 2003, 1623–1626. (d) Trost, B. M.; Tang, W. J. Am. Chem. Soc. 2003, 125, 8744–8745. (e) van Otterlo, W. A. L.; Pathak, R.; de Koning, C. B.; Fernandes, M. A. Tetrahedron Lett. 2004, 45, 9561–9563. (f) Kumar, K.; Michalik, D.; Castro, I. G.; Tillack, A.; Zapf, A.; Arlt, M.; Heinrich, T.; Böttcher, H.; Beller, M. Chem. Eur. J. 2004, 10, 746–757. (g) Khedkar, V.; Tillack, A.; Benisch, C.; Melder, J.-P.; Beller, M. J. Mol. Catal. A: Chem. 2005, 241, 175–183. (h) Ti: Bexrud, J. A.; Beard, J. D.; Leitch, D. C.; Schafer, L. L. Org. Lett. 2005, 7, 1959–1962. (i) Pd: Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644–8651. (j) Group 3 metal: Kim, Y. K.; Livinghouse, T.; Horino, Y. J. Am. Chem. Soc. 2003, 125, 9560–9561. (k) Ca: Crimmin, M. R.; Casely, I. J.; Hill, M. S. J. Am. Chem. Soc. 2005, 127, 2042–2043. (l) Ln: Hao, J.; Marks, T. J. Organometallics 2006, 25, 4763–4772.

(8) (a) O'Shaughnessy, P. N.; Knight, P. D.; Morton, C.; Gillespie, K. M.; Scott, P. Chem. Commun. 2003, 1770-1771. (b) Roesky, P. W.; Müller, T. E. Angew. Chem., Int. Ed. 2003, 42, 2708-2710. (c) Hong, S.; Tian, S.; Metz, M. V.; Marks, T. J. J. Am. Chem. Soc. 2003, 125, 14768-14783. (d) Knight, P. D.; Munslow, I.; O'Shaughnessy, P. N.; Scott, P. Chem. Commun. 2004, 894-895. (e) Martinez, P. H.; Hultzsch, K. C.; Hampel, F. Chem. Commun. 2006, 2221-2223. (f) Lebeuf, R.; Robert, F.; Schenk, K.; Landais, Y. Org. Lett. 2006, 8, 4755-4758. (g) Gribkov, D. V.; Hultzsch, K. C.; Hampel, F. J. Am. Chem. Soc. 2006, 128, 3748-3759. (h) Johns, A. M.; Utsunomiya, M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 1828–1839. (i) Zhang, J. L.; Yang, C. G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798-1799. (j) Watson, D. A.; Chiu, M.; Bergman, R. G. Organometallics 2006, 25, 4731-4733. (k) Wood, M. C.; Leitch, D. C.; Yeung, C. S.; Kozak, J. A.; Schafer, L. L. Angew. Chem., Int. Ed. 2007, 46, 354-358. (1) Cochran, B. M.; Michael, F. E. J. Am. Chem. Soc. 2008, 130, 2786-2792.

(9) (a) Doi, H.; Sakai, T.; Iguchi, M.; Yamada, K.; Tomioka, K. J. Am. Chem. Soc. 2003, 125, 2886–2887. (b) Doi, H.; Sakai, T.; Yamada, K.; Tomioka, K. Chem. Commun. 2004, 1850–1851. (c) Sakai, T.; Kawamoto, Y.; Tomioka, K. J. Org. Chem. 2006, 71, 4706–4709. (d) Sakai, T.; Yamada, K.; Tomioka, K. Chem. Asian J. 2008, 3, in press.

(10) Ogata, T.; Ujihara, A.; Tsuchida, S.; Shimizu, T.; Kaneshige, A.; Tomioka, K. *Tetrahedron Lett.* **2007**, *48*, 6648–6650.

(11) Review: Clayden, J. Organolithiums: Selectivity for Synthesis; Pergamon Press: Oxford, U.K. 2002; pp 273-335. Table 1. Aminolithiation-Carbolithiation of 1a

Consideration of competitive steps between protonation and carbolithiation of **3** led us to screening of amine as a proton source (entries 3-7). It was impressive to find that lithium pyrrolidide gave hydroamination product **6a** in 29% yield along with its deallylated amine in 55% yield without formation of carbolithiation product **7a** (entry 5). A bulkier lithium tetramethylpiperidide (TMP) gave **7a** in 53% yield and **6a** in 9% yield (entry 6). The most bulky *tert*butyltritylamine¹³ gave only **7a** in 88% yield without detective amount of **6a** (entry 7). These dependencies of formation of **7a** and **6a** on the bulkiness of amine rationalize the preferred carbolithiation of **3** and protonation of less crowded **4** with a bulky amine, and protonation of **3** with a less bulky amine.

Solvent effect is noteworthy to give an almost diastereomer free **7a** in 85% yield as a 30:1:0 diastereomer mixture in a 1:7 mixture of THF and toluene (entry 8). Major isomer was determined to be *trans,cis*-**7a** as shown by NOE.

The competition of carbolithiation and protonation of **3** was further experimentally evidenced by the lower temperature reaction. The reaction with 1.5 equiv of LDA at -20 °C for 6 h and further at rt for 3.5 h gave **6a** in 94% yield without production of **7a**. On the other hand, the reaction with 1.5 equiv of lithium *tert*-butyltritylamide at -20 °C for 21 h gave **7a** in 65% yield and **6a** in 10% yield.

The preferred production of **6a** and trace amount of **7a** by the treatment with a catalytic amount of butyllithium and

⁽¹²⁾ Recently reported impressive works: (a) Coldham, I.; Price, K. N.; Rathmell, R. E. Org. Biomol. Chem. **2003**, *1*, 2111–2119. (b) Bailey, W. F.; Jiang, X. L. Tetrahedron **2005**, *61*, 3183–3194. (c) Deng, K.; Bensari-Bouguerra, A.; Whetstone, J.; Cohen, T. J. Org. Chem. **2006**, *71*, 2360– 2372. (d) Melero, C.; Guijarro, A.; Baumann, V.; Perez-Jimenez, A. J.; Yus, M. Eur. J. Org. Chem. **2007**, 5514–5526. (e) Hogan, A.-M. L.; O'Shea, D. F. J. Org. Chem. **2008**, *73*, 2503–2509. (f) Tang, S.; Han, J.; He, J.; Zheng, J.; He, Y.; Pan, X.; She, X. Tetrahedron Lett. **2008**, *49*, 1348– 1351.

⁽¹³⁾ Busch-Petersen, J.; Corey, E. J. *Tetrahedron Lett.* **2000**, *41*, 2515–2518.

LDA is also rationalized by the protonation of **3** by **1a** itself that is considered to be a relatively less bulky amine (entries 1 and 2).

The intermediacy of **3** was evidenced by the production of **1a** and **7a** from **6a** (Scheme 2). Treatment of **6a** with 1.5

equiv of LDA in THF at reflux for 17 h gave **1a** in 31%, **6a** in 12%, and **7a** (17:1:0) in 37% yield. Lithiation at the benzylic position of **6a** in forming **3** seems to require a high refluxing temperature.

Having established the aminolithiation-carbolithiation tandem cyclization conditions, other allyl- and homoallylaminoalkenes **1b**-**f** were examined. As shown in Scheme 3, terminal primary alkyllithium producing tandem aminolithiation-carbolithiation proceeded smoothly to give

Scheme 3. Successful Aminolithiation–Carbolithiation of 1b–d and Unsuccessful Carbolithiation of 1e,f

bicyclic amines 7b-d in reasonably high yield and diastereoselectivity.¹⁴ Not only octahydroindolizines 7a-c but also hexahydro-1*H*-pyrrolizine 7d were produced.

Figure 1. Stereochemical models 8 and 9.

The structural limitation became apparent from the attempted cyclization of **1e** that produces Li-C bond at the tertiary carbon center through carbolithiation. The reaction stopped at the stage of aminolithiation to produce **6e**. Another limitation was 6-exo carbolithiation giving octahydro-1*H*quinolizine. The reaction stopped at the aminolithiation stage to afford **6f**.

The model proposed by Bailey, and recently by Cohen and Jordan, rationalized stereochemistry in the intramolecular carbolithiation.¹⁵ Thus, the model **8** fits for the preferencial production of *trans,cis*-**7a**-**c**. Although the model **9** predicts the formation of *trans,cis*-**7d**, involvement of lithiophilic THF in the transition state allows formation of *trans,trans*-**7d**.^{15b,16}

A substoichiometric amount of lithium amide was found to give tandem aminolithiation—carbolithiation product **7a**. Portionwise addition of allylaminoalkene **1a** in THF to 0.36 equiv of *t*-BuTrNLi in THF during three 2 h intervals at room temperature gave **7a** in 64% yield along with **6a** in 17% yield.

In summary, we have demonstrated the double cyclization of allylaminoalkenes through tandem aminolithiation—carbolithiation providing ready access to bicyclic octahydroindolizine and hexahydro-1*H*-pyrrolizine skeletons. A catalytic amount of lithium amide was also shown to give tandem aminolithiation—carbolithiation product. Extension to other types of bicyclic amines and asymmetric reactions is the focus of future studies.

⁽¹⁴⁾ It is obvious from Table 1 that the relative stereochemistry between azomethine carbon and benzyl methine carbon is highly controlled even with THF alone. Indeed, the reaction of **1b** gave a single diastereoisomer. The reaction of **1d** in toluene-THF mixed solvent system was not examined.

^{(15) (}a) Bailey, W. F.; Khanolkar, A. D.; Gavaskar, K.; Ovaska, T. V.; Rossi, K.; Thiel, Y.; Wiberg, K. B. *J. Am. Chem. Soc.* **1991**, *113*, 5720– 5727. (b) Liu, H.; Deng, K.; Cohen, T.; Jordan, K. D. Org. Lett. **2007**, *9*, 1911–1914.

⁽¹⁶⁾ Metallo-ene cyclizations are well known to yield cis products: Oppolzer, W. Angew. Chem., Int. Ed. Engl. **1989**, 28, 38–52. Specifically for Li-ene cyclizations: Cheng, D.; Zhu, S.; Liu, X.; Norton, S. H.; Cohen, T. J. Am. Chem. Soc. **1999**, 121, 10241-10242. Cheng, D.; Knox, K. R.; Cohen, T. J. Am. Chem. Soc. **2000**, 122, 412–413. Krief, A.; Kenda, B.; Remacle, B. Tetrahedron **1996**, 52, 7435–7463. Krief, A.; Kenda, B.; Maertens, C.; Remacle, B. Tetrahedron **1996**, 52, 7465–7473. We thank the reviewer for good suggestions.

Acknowledgment. This research was partially supported by the 21st Century COE (Center of Excellence) Program "Knowledge Information Infrastructure for Genome Science", a Grant-in-Aid for Scientific Research, and a Grantin-Aid for Scientific Research on Priority Areas "Advanced Molecular Transformations" from the Ministry of Education, Culture, Sports, Science and Technology, Japan. **Note Added after ASAP Publication.** There was an error in the abstract/toc graphic, the corrected version was published on August 7, 2008.

Supporting Information Available: Experimental details and characterization of data of new compounds. This material is available free of charge via the Internet at http://pubs.acs.org. OL801397V